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ABSTRACT 
We propose a constrained, three-dimensional, 
nonparametric, entropy-based, coupled, multi-shape 
approach to segment subcortical brain structures from 
magnetic resonance images (MRI). The proposed method 
uses PCA to develop shape models that capture structural 
variability. It integrates geometrical relationship between 
different structures into the algorithm by coupling them 
(limiting their independent deformations). On the other 
hand, to allow variations among coupled structures, it 
registers each structure separately when building the shape 
models. It defines an entropy-based energy function, which 
is minimized using quasi-Newton algorithm. To this end, 
probability density functions (pdf) are estimated iteratively 
using nonparametric Parzen window method. In the 
optimization algorithm, constraints are used to improve 
segmentation quality. These constraints are extracted from 
training data. Sample results are given for the segmentation 
of caudate, hippocampus, and putamen, illustrating highly 
superior performance of the proposed method compared to 
the most similar methods in the literature.  
 

Index Terms— Image segmentation, brain structures, 
shape modeling, entropy, nonparametric, constrained 
optimization. 

1. INTRODUCTION
Medical image segmentation is the most important step in 
visualization, surgical guidance and planning, diagnosis and 
quantitative measurement [1]. However, many important 
structures in medical images do not present a clear boundary 
for segmentation and have variations between different 
subjects. In addition, imaging methods have limitations such 
as low signal-to-noise ratio (SNR), partial volume effects, 
and field inhomogeneities [2]. An exciting approach for the 
segmentation is based on the optimization of the energy 
function using partial differential equations. Kass et al [3] 
introduced the first work in this category which has been 
improved by others in recent years. For the shape 
representation, parametric active contours and geometric 
active contours have been used. In the definition of the 
energy function, earlier methods use the boundary 
information for the structures of interest [4]-[5]. Later 

methods use regional information such as intensity 
histogram (parametric and nonparametric, offline or online) 
or variance of an area [6]-[7]. Recent methods benefit from 
a priori knowledge about the structures of interest. This 
makes the segmentation process robust to the imperfect 
image conditions [8]-[9]. For the methods developed based 
on the a priori information, a registration process is essential 
to integrate the prior model into the segmentation process.  

In addition, the anatomical structures in the brain 
are related to the neighboring structures through their 
location, size, orientation, and shape. An integration of 
these relations into the segmentation process improves 
accuracy and robustness as shown in [10]-[11]. In this 
paper, we extend our previous 3D coupled shape 
segmentation method by adding linear constraints on the 
optimization process [12]. In some special cases, 
segmentation failed because of special conditions of the 
image datasets. In these cases, final shape parameters are 
not close to typical values. These typical values can be 
extracted from training datasets and can be used as 
important and powerful constraints in the optimization 
process. In the introduced method, we find some bounds for 
the shape parameters from the training datasets and use 
them as the constraints. To solve the resulting constrained 
optimization problem, we use a sequential quadratic 
programming (SQP) method. This method solves a 
quadratic programming (QP) sub problem in each iteration 
using an active set strategy. As in our previous method, we 
separate shape and pose variability. This is because 
inclusion of both of the pose and shape variability in a PCA 
based model generates huge variability and limits the 
model’s benefits for segmentation. We align each of the 
shape classes in the training datasets individually to extract 
co-variations between shape classes without considering 
their spatial locations (poses). Furthermore, we use 
completely online pdf estimation, updated during iterations 
of the optimization algorithm. We use pre-register test 
datasets for segmentation.  

 

2. SHAPE MODEL 
In many segmentation methods, a shape model is used 
where richer models generate more accurate results. Several 
shape representation methods are used in the literature that 
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are based on the kernel integrals [13] and medial shapes 
[14]. More powerful methods for shape representation are 
based on distance function, implicit representation, and 
relationships among different shapes, including pose, 
orientation, and other geometrical relations [15],[16]. In this 
paper, we use shape relation and individual transformations 
for each structure for segmentation. To extract shape 
relation, we apply principal component analysis (PCA) on 
the 3D training datasets. To reach accurate results, we 
individually align each structure of interest in the training 
datasets. 

 

2.1. Alignment 
In knowledge based segmentation methods that use shape 
variation, alignment is a critical step. It has four important 
constituents: a transformation matrix, a metric, an 
interpolator, and an optimizer. We use similarity transform 
with 7 parameters (1 for scaling, 3 for rotations, and 3 for 
translations). For the metric, since we use a labeled 3D 
image that represents the desired structure, the cardinality 
metric is used. For interpolation of binary images, we use a 
nearest neighbor interpolator. For optimization, we use the 
Nelder–Mead (amoeba) method which is a popular direct 
search method for minimizing real functions with our 
desired property [17]. Using the above methods, we extract 
shape variability of the desired structures for model 
construction as explained in the following section. 
2.2. Implicit Parametric Shape Representation 
We use a distance map for shape representation that is zero 
on the boundary of a shape and in other points is the 
Euclidian distance from the boundary (negative inside, 
positive outside). After extraction of the distance maps of 
m desired structures for n  different training datasets 
( k

i shows the distance map of the thk structure of the 
thi dataset), we subtract the mean distance map of each 

structure, computed by averaging of the training datasets 
( k ), from each of the n signed distance maps to remove 
similar parts in different shapes and show them with k

i . 
We use these n m  maps to show variability of different 
structures in the training dataset. We collect n column 
vectors of size 

x y z
m N N N and use them to extract 

n eigenvectors for each of the m structures and show their 
variability ( k

i ).  To allow limited, robust shape variability, 
we use q n eigenvectors to represent each shape. In 
addition, to consider pose differences, we add 7 pose 
parameters (for local alignment of the structures) to the 
shape parameters of each structure. Finally, for each 
structure, we may write 

1
, , , , , , ,

q
k k k k

k k k i i k k k
i

x y z x y z w x y zw p (1)

where w is the vector of eigenvectors multipliers and pk is 
the vector containing 7 transformation parameters for the 

alignment of the kth structure. In this manner, each 
structure's pose may change while shape classes co-
variations are used for coupling. In the next section, we 
present our proposed entropy-based segmentation method 
using the shape model described above.

3. SEGMENTATION OF STRUCTURES 
After construction of the shape model and shape classes co-
variations, an energy function is defined for the 
segmentation process. In this section, we explain our energy 
model and optimization method. 
 

3.1. Energy Model 
The proposed entropy-based method classifies image voxels 
to distinguish regions by minimizing a weighted sum of the 
conditional differential entropies of different structures. To 
segment m coupled structures with closed boundaries, there 
are m regions for these structures. We set the area outside 
of the m structures as 1m  and use this notation 
throughout the paper. Based on the entropy of these 
regions , 1 1k k m , the energy function is defined as  

1

1 1

1

ˆ, ,
j

m

m j

j

J P H  where | | represents the 

cardinality of a set  (number of pixels). When all of the 
regions are as uniform as possible, the energy function is at 
its minimum. Nevertheless, there is the important problem 
of estimating conditional differential entropies. 
We estimate the entropy of the kth structure 

using 1ˆ ˆln ,
k

k k

k

H p I dx x . In addition, we use 

k

kP  based on several previous publications [11]. In 

entropy estimation, ˆ , kp I x is the approximate 
probability density function (pdf) in region k of the 3D 
image I. Many researchers estimated pdf's off-line. 
However, we observed dissimilar dynamic ranges of image 
intensities in different datasets and concluded that an off-
line pdf is suboptimal; we use on-line estimation.  
We estimate pdf's using the Parzen window method [18], 

as 1
ˆ ˆ ˆ,p I K I I dx x x x . In this equation, K is 

the Gaussian kernel with a standard deviation (sigma) as its 
tuning parameter, which sets the resolution of the pdf 
estimation process. Choosing low values make pdf 
estimation sensitive to noise and high values remove useful 
details from the estimated pdf. In the literature, values 
between 1and 3 are used. Finally, we write the energy 

function as: 
1

1 1

1

ˆ, , ln ,
m

m j
j

j

J J P p I dx x . 

where P is vector of 7m q parameters (because each 
one of the local alignments have 7 parameters).
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3.2. Constrained Optimization 
In our previous work, we used Quasi-Newton algorithm 
with BFGS method for Hessian matrix estimation [12]. In 
this paper, we use constrained optimization to transform the 
segmentation problem into an easier sub problem that can 
then be solved by an iterative process. The Kuhn-Tucker 
(KT) equations are the most popular method to solve 
constraint methods [19]. If the objective function and 
constraints are convex, then KT equations are both 
necessary and sufficient for a global solution point. We can 
state the general constrained problem as: 

( ) 0 1, ,
minimize ( )

( ) 0 1, ,
i

x
i

C P i m
J P subject to

C P i m N (2) 

where Ci shows the ith constraint, m of this constraints are 
equality and N-m+1 of them are non-equality. The Kuhn-
Tucker equations can be stated as: 

* * *

1
* *

*

( ) . ( ) 0

. ( ) 0 1, , ( ) 0 1, ,
0 1, , ( ) 0 1, ,

m

i i
i

i i i

i i

J P C P

C P i m and C P i m
i m N and C P i m N

(3) 

where P* is a global solution vector. Constraints used in our 
problem are lower and upper bounds that can be shown with 
non-equality linear constraints. Equation (3) is quadratic 
programming sub-problem. To solve it, we used a 
sequential quadratic programming where in each major 
iteration, the Hessian matrix is updated using BFGS method 
as follows. 

1 1
1 1

1

. .
m m

k k i i k k i i k
i i
T T T

k k k k k k
k k T T

k k k k k

q J P C P J P C P

q q H s s H
H H

q s s H s

(4) 

Where 1k k ks P P . Then, the following problem is 
solved using an active set strategy method described in [20].  

1minimize ( ) 2
0 1, ,

0 1, ,

TT
k kx

T
i k i k

T
i k i k

q x x H x J P x

C P x C P i m

C P x C P i m N

 
(5) 

Finally, we use a line search to find 1k k kP P d . The 
gradients can be estimated using numerical methods but 
analytical computation is more robust and generates results 
that are more accurate. There are two types of parameters 
w and kp and for the thi component of w and kp .  We 

compute the derivatives as follows. 
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4. EXPERIMENTAL RESULTS 
In this section, we present the results of applying the 
proposed method to the real MRI data. This data is obtained 
from the Internet Brain Segmentation Repository (IBSR) 
and used for the training and testing of the proposed method 
[21]. Datasets are T1-weighted volumetric images with 
different pixel sizes. Expert physicians have segmented 43 
structures for 18 datasets. We define the ROI as 1.05 times 
of the smallest cube that covers all of the desired structures 
in different training datasets. To evaluate the results, we use 
the Dice coefficient [22]. In addition, as an alternative 
evaluation measure, we use the segment Hausdorff distance 
[23]. For optimization and extraction of the principal 
shapes, we use MATLAB [20]. All programs are run on a 
3.2 GHz  Windows XP workstation with 2 GB RAM. We 
use ten datasets (randomly chosen) for training and the 
remaining eight datasets for testing of the proposed 
segmentation algorithm. We segment each of the left and 
right structures individually using the principal shapes 
extracted from the training datasets. We also segment the 
left and right structures or multiple structures by the 
proposed coupling method. To evaluate the proposed 
method in comparison to the most similar work in the 
literature, we implement and apply the method of Tsai et al 
[11] and our previous method [12] which does not apply 
any constraints. Evaluation of the results using dice 
coefficient and segment Hausdorff distance for the caudate, 
hippocampus, and putamen for eight test datasets are shown 
in Table 1. we can see that coupling of the left and the right 
structures gives better segmentation result and are more 
accurate with respect to the segmentation in alone manner 
with both of the Dice coefficient and segment Hausdorff 
distance measures in almost all cases. Our methods are more 
accurate than the Tsai et al’s method in almost all cases, 
while the constrained method is the most accurate method in 
overall. In Figure 1, sample 3D segmentation results for the 
three structures are shown.  

5. CONCLUSION 
We presented a new method for the segmentation of brain 
subcortical structures using their shapes relation extracted 
using PCA. We used separate shape class registrations to 
extract each class variation independent of the other shape 
classes. To this end, we removed variations due to the shape 
poses by considering each shape representation locally. In 
addition, we allowed independent placements of the shape 
models to allow more flexibility. The energy function used 
for segmentation took into account entropy of different 
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shapes. With an automatic initialization of the structures and 
use of the SQP method, a local minimum of the energy 
function was found. To achieve accurate results, probability 
density functions were calculated in each iteration and 
gradients were computed analytically. Our method has low 
sensitivity to the parameters and is robust. Experimental 
results illustrate robustness and quality of the results 
generated by the proposed framework. 
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Fig 1. (a). Final caudates, hippocampus, and putamen segmented 
with constraints in the coupled manner (green) compared to the 

ideal segmentation (low opacity).  
Table 1. Mean Values of Dice coefficients and segment Hausdorff 
distances for the segmentation obtained by the Tsai et al [11], our 

unconstrained (normal) [12], and constrained method for the 
selected structures without and with the coupling information. 

 

Dice Coefficient Segment Hausdorff 
Distance (mm) 

Tsai 
et al 
[16] 

Normal 
[12] 
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Tsai 
et al 
[16] 

Normal
[12] 

C
on

st
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Caudate Alone 0.55 0.58 0.72 5.97 5.84 5.53
Coupled 0.65 0.74 0.76 5.82 5.46 5.35

Hippocampus Alone 0.59 0.61 0.66 6.29 6.30 6.20
Coupled 0.59 0.62 0.70 6.25 6.17 6.00

Putamen Alone 0.76 0.81 0.81 5.17 5.02 5.01
Coupled 0.78 0.82 0.82 5.06 4.95 4.91
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